The foam drainage equation with time- and space-fractional derivatives solved by the Adomian method
نویسندگان
چکیده
منابع مشابه
The tanh method and Adomian decomposition method for solving the foam drainage equation
Foaming occurs in many distillation and absorption processes. The drainage of liquid foams involves the interplay of gravity, surface tension, and viscous forces. In this paper, we use a semi analytic method, the Adomian decomposition method, and an analytic method, the tanh method to handle the foam drainage equation. The powerful tanh method gives the solution in a closed form. However, Adomi...
متن کاملSolution of Space-time Fractional Telegraph Equation by Adomian Decomposition Method
In the present paper we obtain closed form solutions of spacetime fractional telegraph equations using Adomian decomposition method. The space and time fractional derivatives are considered as Caputo fractional derivative and the solutions are obtained in terms of Mittag-Leffler functions.
متن کاملNumerical solution of time-dependent foam drainage equation (FDE)
Reduced Differental Transform Method (RDTM), which is one of the useful and effective numerical method, is applied to solve nonlinear time-dependent Foam Drainage Equation (FDE) with different initial conditions. We compare our method with the famous Adomian Decomposition and Laplace Decomposition Methods. The obtained results demonstrated that RDTM is a powerful tool for solving nonlinear part...
متن کاملAn Implicit Difference-ADI Method for the Two-dimensional Space-time Fractional Diffusion Equation
Fractional order diffusion equations are generalizations of classical diffusion equations which are used to model in physics, finance, engineering, etc. In this paper we present an implicit difference approximation by using the alternating directions implicit (ADI) approach to solve the two-dimensional space-time fractional diffusion equation (2DSTFDE) on a finite domain. Consistency, unconditi...
متن کاملA new fractional sub-equation method for solving the space-time fractional differential equations in mathematical physics
In this paper, a new fractional sub-equation method is proposed for finding exact solutions of fractional partial differential equations (FPDEs) in the sense of modified Riemann-Liouville derivative. With the aid of symbolic computation, we choose the space-time fractional Zakharov-Kuznetsov-Benjamin-Bona-Mahony (ZKBBM) equation in mathematical physics with a source to illustrate the validity a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Qualitative Theory of Differential Equations
سال: 2008
ISSN: 1417-3875
DOI: 10.14232/ejqtde.2008.1.30